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Importing the ALICE ITS staves into sSPHENIX

Following the effort by Kun, Jin and Darren to make a .gdml file that
can be imported into the sPHENIX G4 simulation, | have been
working on the necessary simulations code to use it.

The code is (will be) at:
[coresoftware/simulation/g4simulation/g4detectors/
PHG4MapsSubsystem.(h,cc)
G4MapsDetector.(h,cc)
G4MapsSteppingAction.(h,cc)
G4CylinderGeom_MAPS.(h,cc)
G4CylinderCell_MAPS.(h,cc)
G4MapsCellReco.(h,cc)
G4CylinderCellGeom.(h,cc)
/macros/macros/g4simulations/
G4_ITS_MAPS.C
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We import only the staves

The idea is to import the staves for each layer into the sPHENIX
simulation setup, and position them by specitying:

e | ayer radius
e Number of staves per layer (implies ¢ angle step)

e |[f the radius changes, use the same arc length as in the ITS
e Stave tilt (my guess for now)

It Is really that simple.

The next tew slides show some end-views of the resulting tracker,
with a single electron thrown in each case

These are for the nominal radii used in the ITS:
double maps_layer_radius[7] = {23.0, 31.0, 39.0, 194.0, 247.0, 353.0, 405.0}; // mm
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Stave tilt angle

The tilt angle used for the inner barrel is 0.25 radians (from eye-

balling the display - we need to find out what tilt ALICE is planning
to use).

The tilt angle for layers 3-6 is zero at present, but it you look
carefully at the display, some tilt may be better.

| have not checked for overlaps vyet.
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its storage
| have implemented the hits in PHG4Hit:

UserSteppingAction: layer 6 chip 9 module 3 stave 22 half_stave 0 edep = 3.61892e-06
Particle: e-
stepping action found hit:
New Hitv1 0x600000000000002 on track 1 EDep 3.61892e-06
Location: X -35.5215/-35.5231 Y 14.856/14.8567 Z 4.339/4.33915
Time 1.28876/1.28882

10: pxin= -8.25659

11: pxout = -8.256061

12 pyin= 3.53841

13: py out = 3.53835

14: pzin= 0.745312

15: pz out = 0.745372

101:layer ID = ©

114:stave index = 22

115:half stave index = 0

116:module index = 3

117:chip index = 9

118:local x pos in = -0.403366

119:local y pos in = 0.0009

120:local z posin = -1.329

125:local x pos out = 1.15834
126:1local y pos out = 0.005
127:local z pos out = 4.33915
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The geometry object

The geometry object is not finished yet.

At present, the hits object records:
e Stave number
e Half-stave number
e Module number
e Chip number
where chip number is equivalent to sensor number (they are 1-1).

But the simulation does not include the pixels. Initially at least, we
will determine the hit pixel positions from:
e The address of the sensor => sensor center
e The positions of the entry and exit hit positions in local
coordinates => location of hit relative to sensor center

This is still to be implemented.
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Finish the geometry object
Digitization

Apply dead areas
Clustering

Tracking

13



